
Set Theory

P. K. Tam

I. Sets

1. Simple Logic

We summon up here some working knowledge of simple logic. A statement ( asser-

tion , sentence) is a collection of words which is either “true” or “false” but not both.

When a statement is true we say that its truth-value is 1; when it is false, its truth

value 0; the truth-value of a statement is therefore either 1 or 0, but not both. Logical

constants ∼ (negation), ∨ (disjunction), ∧ (conjunction), ⇒ (implication) and

⇔ (equivalence) are used to construct new statements from given statements. for state-

ments p and q, the truth-values of ∼ p, p ∧ q, p ∨ q, p ⇒ q and p ⇔ q are determined by

the following table:

p ∼ p

0 1

1 0

p q p ∧ q p ∨ q p ⇒ q p ⇔ q

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

verbally

(we say)

p and q p or q (in

the inclu-

sive sense)

p implies

q (if p,

then q)

p if and

only if q

1
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We often express the statement “For every x, p” by using the symbol ∀ (called the

universal quantifier): “∀x, p” [more syntactically, (∀x) (p)]. Similarly, the symbol ∃
(called the existential quantifier) can be used to write “∃x, p” [more syntactically,

(∃x)(p)] instead of “There exists x such that p”. One should note carefully that the

negation of (∀x)(p) is (∃x)(∼ p), and the negation of (∃x)(p) is (∀x)(∼ p).

2. Sets

Our goal is to acquire some working knowledge of the easier part of ZF set theory (ZF

stands for Zermelo-Fraenkel). For an axiomatic (or “pro-axiomatic”) approach, the fol-

lowing books are recommended:

(1) A.Hajnal and P.Hamburger, Set Theroy, Cambridge University Press, 1999.

(2) D. Goldrei, Classic Set Theory: a guided independent study, chapman & Hall, 1996.

(3) Y.N. Moschovakis, Notes on Set Theory, Springer-Verlag, 1994.

(4) K.T. Leung and Doris L.C. Chen, Elementary Set Theory, Hong Kong University

Press, 1967.

We give below some explanation of the axioms without naming them. We believe

that the ZF set theory is consistent (i.e. no contradiction will arise), and we can safely

manipulate sets according to it. The concepts “set” and “being an element of ” are

primitive (undefined). For lucid expression, we often say/write “x contains u” or “u

belongs to x” meaning “u ∈ x”. Two sets x and y are equal, in symbol x = y, if they

contain the same elements i.e., (∀u)(u ∈ x ⇔ u ∈ y). For our intuitive interpretation, a set

may be regarded as an (intellectual or mathematical) object determined by its elements

e.g., a set of people, a set of sheep, or a set of numbers. We write “∼ (u ∈ x)” simply as

“u 6∈ x”.

All positive integers constitute a unique set N i.e., N is the set which contains every

positive integer and nothing else. We speak of N as the set of all positive integers (with
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the expression “and nothing else” understood and suppressed), and write

N = {x | x is a positive integer}.

From N we can construct the sets Z (of all integers), Q (of all rational numbers), R (of

all real numbers), and C (of all complex numbers), and introduce the usual operations

“addition”, “subtraction”, “multiplication” and “division”. In fact, we can construct the

positive integers 1,2, . . . from the empty set ∅ which is, by definition, the set containing

no element:

∅ = {x | x 6= x}.

This story is however too long for us to go into; interested readers are referred to the

references cited above.

Given a1, a2, · · · , an, where n is any positive integer, there is a set which contains

exactly these a1, a2, · · · , an as its elements (and nothing else); this unique set is denoted

by: {x | x = a1, a2, · · · , or an}, or more simply {a1, a2, · · · , an}.
More generally, given a set I and sets ai for each i ∈ I, there is a set containing exactly

the ai, i ∈ I, as its elements; we denote this set simply as {ai | i ∈ I}.
For sets x and y, y is said to be a subset of x, in symbol y ⊂ x, if each element of y

is an element of x i.e., (∀u)(u ∈ y ⇒ u ∈ x). All subsets y of x constitute a unique set

℘(x), called the power set of x:

℘(x) = {y | y ⊂ x}.

For sets a1, a2, · · · , an, where n is a positive integer, we can produce a set, called the

union of a1, a2, · · · , and an, in symbol a1 ∪ a2 ∪ · · · ∪ an or more concisely
n⋃

j=1

aj, by the

definition:

a1 ∪ a2 ∪ · · · ∪ an = {x | x ∈ aj for some j = 1, 2, · · · , n}.

So
n⋃

j=1

aj is the set which contains every element of each aj, j = 1, 2, · · · , n, and nothing

else. More generally, for a set x, there exists a set, called the union of x , in symbol
⋃

x,
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which contains every element of each element of x (and nothing else):

⋃
x = {y | y ∈ u for some u ∈ x}.

So
⋃{a1, a2} = a1 ∪ a2, and

⋃ ∅ = ∅.
Given a set u and a statement p(x) involving (a free variable) x, there exists a set y

which contains exactly those elements z of u such that p(z) is true:

y = {z | z ∈ u, p(z) is true }

is a set. As an example, for sets a1, a2 applying the above with a1 as u, and “x ∈ a2” as

p(x), we conclude that there is a set which contains exactly those elements z of a1 such

that z ∈ a2, i.e. {z | z ∈ a1, z ∈ a2 is true } is a set. This set is denoted by a1∩a2, and is

called the intersection of a1 with a2. Similarly we can define the intersection of a set

a1 with sets a2, a3, · · · , an (where n is a positive integer ≥ 2), denoted by a1∩a2∩· · ·∩an

or
n⋂

j=1

aj, by:

n⋂
j=1

aj = {z | z ∈ a1, “z ∈ a2, z ∈ a3, · · · , and z ∈ an” is true }.

Now it is easy to see that the set a1 ∩ a2 ∩ · · · ∩ an is independent of the ordering of

sets a1, a2, · · · , an e.g., a1 ∩ a2 = a2 ∩ a1, a1 ∩ a2 ∩ a3 = a3 ∩ a1 ∩ a2. Also we can define

the intersection of a non-empty set x by:

⋂
x = {z | z ∈ u for every u ∈ x}

which is, we emphasize, a set. For example,

⋂
{a1, a2} = a1 ∩ a2.

Sets a1 and a2 are said to be disjoint if a1∩a2 = ∅; a set s of sets is said to be pairwise

disjoint if for all distinct a, b ∈ s, a ∩ b = ∅.
Let I be a set, and let ai be a set for each i ∈ I. Then there exists a set which contains

exactly the a′is, and is denoted by: {u | u = ai for some i ∈ I}, or in short {ai | i ∈ I}.
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The set
⋃{ai | i ∈ I} is also written as

⋃
i∈I

ai; similarly the set
⋂{ai | i ∈ I} is also written

as
⋂
i∈I

ai.

For sets a and b, there is a set, called the complement of b in a and denoted by a\ b,

which contains exactly those elements of a which do not belong to b:

a \ b = {x | x ∈ a, x 6∈ b}.

Given a and b, we can define an ordered pair (a, b) ( oversetdef=
{{a}, {a, b}}) such

that ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d. For sets y and

z there exists a set called the (Cartesian) product of y by z, denoted by y × z, which

contains exactly all ordered pairs (a, b) formed by a ∈ y and b ∈ z:

y × z = {t | t = (a, b) for some a ∈ y and b ∈ z}.

Similarly given sets y1, y2, · · · , yn, where n ∈ N, we can form the (Cartesian) product

of y1, y2, · · · , yn, denoted by y1 × y2 × · · · × yn or
∏n

j=1 yj, which is the set containing

exactly all ordered n-tuples (a1, a2, · · · , an) with aj ∈ yj, j = 1, 2, · · · , n:

n∏
j=1

yj = {t | t = (a1, a2, · · · , an), where aj ∈ yj for j = 1, 2, · · · , n};

we note that (a1, a2, · · · , an) = (b1, b2, · · · , bn) if and only if aj = bj for j = 1, 2, · · · , n.

As examples we have Rn and Cn:

Rn = R× R× · · · × R︸ ︷︷ ︸
n terms

, Cn = C× C× · · · × C︸ ︷︷ ︸
n terms

.

The product of an arbitrary family of sets will be defined at the end of §5 below.

3. Some Simple Formulas

Theorem 1. We have the following formulas for sets a, b, c:

(i) a ⊂ b iff a ∪ b = b iff a ∩ b = a iff a \ b = φ iff b \ (b \ a) = a;

(ii) a ∪ φ = a, a ∩ φ = φ;
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(iii) a ∪ b = b ∪ a, a ∩ b = b ∩ a;

(iv) (a ∪ b) ∪ c = a ∪ (b ∪ c), (a ∩ b) ∩ c = a ∩ (b ∩ c);

(v) a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c), a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c);

(vi) (De Morgan’s rules)

a \ (b ∪ c) = (a \ b) ∩ (a \ c), a \ (b ∩ c) = (a \ b) ∪ (a \ c);

(b ∪ c) \ a = (b \ a) ∪ (c \ a), (b ∩ c) \ a = (b \ a) ∩ (c \ a);

(vii) a ∩ (b \ c) = (a ∩ b) \ (a ∩ c), a ∪ (b \ c) = (a ∪ b) \ (c \ a);

(viii) if a ⊂ c, then a \ b = a ∩ (c \ b),

(ix) a ⊂ b ⇔ c \ b ⊂ c \ a;

(x)

a ∩ (
⋃

c) =
⋃{a ∩ x : x ∈ c}, a ∩ (

⋂
c) =

⋂{a ∩ x : x ∈ c},
a ∪ (

⋃
c) =

⋃{a ∪ x : x ∈ c}, a ∪ (
⋂

c) =
⋂{a ∪ x : x ∈ c},

a \ (
⋃

c) =
⋂{a \ x : x ∈ c}, a \ (

⋂
c) =

⋃{a \ x : x ∈ c};

(xi) a× b = φ iff either a = φ or b = φ;

(xii) (a ∪ b)× c = (a× c) ∪ (b× c), c× (a ∪ b) = (c× a) ∪ (c× b);

(xiii) (a ∩ b)× c = (a× c) ∩ (b× c), c× (a ∩ b) = (c× a) ∩ (c× b);

(xiv) (a \ b)× c = (a× c) \ (b× c), c× (a \ b) = (c× a) \ (c× b);

(xv) a ⊂ b ⇒ a× c ⊂ b× c,

(c 6= φ and a× c ⊂ b× c) ⇒ a ⊂ b,

(c 6= φ and c× a ⊂ c× b) ⇒ a ⊂ b.

4. Mappings

A mapping from (or on) a set s to (or into) a set t is an ordered triple f = (s, t, F )

where F ⊂ s× t satisfies:

(i) for each x ∈ s, there exists y ∈ t such that (x, y) ∈ F ;

(ii) for each x ∈ s, and for y, z ∈ t,

(
(x, y) ∈ F and (x, z ∈ F )

) ⇒ y = z.
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Very often we write “f : s → t (is a mapping)” or “f maps s to t” instead of “f =

(s, t, F ) is a mapping”, and write “f : x 7→ y” or “y=f(x)” instead of “(x, y) ∈ F”. In

this notation, we express F by “y = f(x), x ∈ s”. s is called the domain (or the set of

departure) of f , denoted by D(f); t is called the target (or the set of destination)

of f , denoted by R(f); y is called the image of x under f , f is said to map x onto

y, and x is called a pre-image of y under f . Note that for an arbitrary z ∈ t, there

may be distinct x,w ∈ s satisfying (x, z), (w, z) ∈ F i.e. f(x) = z = f(w); on the other

hand, there may not be any x ∈ s satisfying (x, z) ∈ F i.e. f(x) = z. f is said to be

surjective (or f is a surjection) if for each z ∈ t, there exists (at least one) x ∈ s

such that f(x) = z; f is said to be injective (or f is an injection) if for any x,w ∈ s,

f(x) = f(w) ⇒ x = w; f is said to be bijective (or f is a bijection) if f is both surjective

and injective.

We note that mappings f : s → t and g : u → v are equal if and only if s = u, t = v,

and f(x) = g(x) for every x ∈ s.

For f : s → t and a ⊂ s, we define f(a) = {u ∈ t | u = f(x) for some x ∈ a}, which

is called the image of a under f . f(s) is called the total image of f , or range of f ,

denoted by Im(f). For b ⊂ t, we define f−1(b) = {x | x ∈ s, f(x) ∈ b}, and call f−1(b)

the pre-image of b under f . In case b = {z} (where z ∈ t), we write f−1(z) instead of

f−1({z}). We have the following

Theorem 2. Let f : s → t be a mapping, a1, a2 ⊂ s, A ⊂ ℘(a), b1, b2 ⊂ t, and B ⊂ ℘(t).

Then

(i)

f(a1 ∪ a2) = f(a1) ∪ f(a2), f(a1 ∩ a2) ⊂ f(a1) ∩ f(a2),

f(a1 \ a2) ⊃ f(a1) \ f(a2), f (
⋃

A) =
⋃ {f(a) : a ∈ A},

f (
⋂

A) ⊂ ⋂ {f(a) : a ∈ A} (assuming A 6= ∅ for this formula);

(ii)

f−1(b1 ∪ b2) = f−1(b1) ∪ f−1(b2), f−1(b1 ∩ b2) = f−1(b1) ∩ f−1(b2),
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f−1(b1 \ b2) = f−1(b1) \ f−1(b2), f−1 (
⋃

B) =
⋃ {f−1(b) : b ∈ B},

f−1 (
⋂

B) =
⋂ {f−1(b) : b ∈ B} ( assuming B 6= ∅ for this formula);

(iii) f−1 (f(a)) ⊃ a, f (f−1(b)) ⊂ b;

(iv) if f is injective, then

f(a1 ∩ a2) = f(a1) ∩ f(a2), f (
⋂

A) =
⋂ {f(a) : a ∈ A} for A 6= ∅,

f(a1 \ a2) = f(a1) \ f(a2), f−1 (f(a)) = a;

(v) if f is surjective, then f (f−1(b)) = b.

For mappings f : s → t, g : u → v, the mapping (f−1(u), v,H) given by

H =
{
(x, z) ∈ f−1(u)× v | z = g(y), y = f(x)

}

is called the composite of g by f , denoted by g ◦ f . Thus g ◦ f maps f−1(u) (which may

be empty) into v, and for each x ∈ f−1(u),

(g ◦ f) (x) = g (f(x)) .

Note that in general g ◦ f 6= f ◦ g, even if they have the same domain. For a set s, the

mapping is : s → s given by is(x) = x, x ∈ s, is called the identity mapping on s. We

can easily prove

Theorem 3. We have the following.

(i) Let f : s → t, g : t → u, and h : u → v be mappings. Then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(ii) Let f : s → t be an injection. There exists uniquely a mapping f
-1

: Im(f) → s, called

the inverse (mapping) of f , such that f
-1 ◦ f = is. Moreover we have: f ◦ f

-1
= iIm(f).

We write f−1 instead of f
-1

when it is more convenient to do so and when no confusion

is likely to arise.

(iii) A mapping f : s → t is injective if and only if for any mappings p : w → s,

q : w → s,

f ◦ p = f ◦ q ⇒ p = q.
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(iv) The composite g ◦ f of injections f : s → t and g : t → u is an injection.

(v) A mapping f : s → t is surjective if and only if for any mappings k : t → r, ` : t → r,

k ◦ f = ` ◦ f ⇒ k = `.

(vi) The composite g ◦ f of surjections f : s → t and g : t → u is a surjection.

(vii) Let f : s → t, g : t → u be mappings, let a ⊂ s, and let b ⊂ u. Then

(g ◦ f) (a) = g (f(a)) , (g ◦ f)−1 (b) = f−1
(
g−1(b)

)
.

(viii) Let f : s → t, g : t → u be bijections. Then g ◦ f is bijective and the inverse

mapping (g ◦ f)
–1

of g ◦ f is equal to the composite of the inverse mapping f
-1

by the

inverse mapping g
-1
:

(g ◦ f)
–1

= f
-1 ◦ g

-1
.

Let I be a set and let ai be a set for each i ∈ I, the mapping f on I to the set {ai |
i ∈ I} given by f(i) = ai is denoted by (ai)i∈I , and is called a family of sets. When

I = N (respectively, {1, 2, · · · , n} for some n ∈ N), f is called a sequence (resp., finite

sequence). The set of all mappings g on I to the set
⋃
i∈I

ai such that g(i) ∈ ai for each

i ∈ I is called the product of (ai)i∈I , and is denoted by
∏

i∈I ai:

∏
i∈I

ai = {g | g : I →
⋃
i∈I

ai is a mapping, g(i) ∈ ai for each i ∈ I}.

Note that when I = {1, 2, · · · , n}( where n ∈ N), this is essentially
∏n

j=1 aj, as we may

identify n−tuples with mappings on I.

Remark . By the axiom of choice (to be explained in §II.3 below) we can prove that:

For a surjection f : s → t, there exists a mapping g : t → s such that f ◦ g = it. In

general, such g is not unique and g ◦ f 6= is.

5. Relations

For sets a and b, a relation from a to b is an ordered triple (a, b, R) where R is a subset

of the product a× b. When a and b are well understood (and no confusion is likely), we
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sometimes say that R [instead of (a, b, R)] is a relation. For simplicity we write xRy in

place of (x, y) ∈ R.

For us the most important relations are equivalence relations and partial orders.

A partial order in a set s is a relation (s, s, R) from s to s, which satisfies the

following conditions:

(i) for each x ∈ s, xRx,

(ii) for all x, y ∈ s (meaning x ∈ s, y ∈ s), (xRy and yRx) ⇒ x = y,

(iii) for all x, y, z ∈ s, (xRy and yRz) ⇒ xRz.

A partial order is often denoted by ¹. If for every pair of x, y ∈ s, either x ¹ y or y ¹ x

is true, then ¹ is called a total order (or linear order) in s. A partial order need not

be a total order.

Let ¹ be a partial order in a set s. A subset t of s is said to be bounded above

(relative to ¹) if there is y ∈ s such that for every x ∈ s, x ¹ y. And y is called an

upper bound of t. Similarly we define the concepts of t being bounded below, and a

lower bound of t. An x ∈ t is called a maximal element of t if there does not exist

a u ∈ t \ {x} such that x ¹ u, i.e. for all v ∈ t, x ¹ v ⇒ x = v. Similarly we define the

concept of a minimal element of t. An element x ∈ t is called a greatest element of

t if for all v ∈ t, v ¹ x. A greatest element is a maximal element, but a maximal element

may not be a greatest element. Similarly, we define the concept of a least element of t,

and show that a least element is a minimal element but a minimal element may not be

a least element. Note that t may not be bounded above or/and below (hence does not

have an upper and/or lower bound), may not have a maximal element and/or a minimal

element, may not have a greatest element and/or a least element; t may have more than

one maximal elements and/or more than one minimal elements; however, t has at most

one greatest element, and/or at most one least element. t is called a chain in s if for

every pair of x, y ∈ t, either x ¹ y or y ¹ x is true, i.e. if the restriction of ¹ to t is a

total order in t.
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A partial order ¹ in s is called a well order in s if every non-empty subset t of s has

a least element (in t). Clearly, a well order is a total order.

We consider a simple example. Let s = {3, 1} × [0, 2], and define ¹ in s by:

(a, b) ¹ (c, d) iff a = c, b ≤ d (as real numbers).

Let t = {3, 1} × [0, 2], u = {3} × (0, 1) Then

(i) ¹ is a partial order, but not a total order, in s,

(ii) t is not a chain in s, but u is a chain in s,

(iii) t has two maximal elements (1, 2), (3, 2), none of which is a greatest element, t has

two minimal elements (1, 0), (3, 0), none of which is a least element, but u has neither a

maximal element nor a minimal element,

(iv) t has neither a greatest element nor a least element,

(v) t is neither bounded above nor bounded below, but u is bounded above and below.

An equivalence relation in a set s is a relation (s, s, R) from s to s, which satisfies

the following conditions:

(i) for each x ∈ s, xRx,

(ii) for any x, y ∈ s, xRy ⇒ yRx,

(iii) for any x, y, z ∈ s, (xRy and yRz ⇒ xRz).

Let R be an equivalence relation in a set s [i.e. let (s, s, R) be an equivalence relation

from s to s]. For x ∈ s, we define ẋ to be the subset of s which contains all elements y ∈ s

satisfying yRx:

ẋ = {y | y ∈ s and yRx}.

Theorem 4. Let R be an equivalence relation in a set s. Then

(i) for x, z ∈ s, ẋ = ż if and only if xRz;

(ii) for x, z ∈ s, either ẋ = ż or ẋ ∩ ż = ∅;
(iii)

⋃{ẋ | x ∈ s} = s, where {ẋ | x ∈ s} is a short form of {u | u ∈ ℘(s), u =

ẋ for some x ∈ s}.
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The set ẋ is called the equivalence class containing x, and x is called a representative

of the equivalence class ẋ. The set {ẋ | x ∈ s} is denoted by s/R, and is called the

quotient set induced by the equivalence relation R in s. The surjection π : s → t given

by π(x) = ẋ is called the quotient map induced by R.

The concept of an equivalence relation in a set s is closely related to the concept of a

partition of the set s. By a partition of a set t we mean a subset p of ℘(t) satisfying:

(i) for any u, v ∈ p, either u = v or u ∩ v = ∅,

(ii)
⋃

p = t.

Thus s/R is a partition of s. On the other hand, given a partition p of a set t, we can

define

R = {(x, y) ∈ t× t : there exists u ∈ p, both x and y belong to u},

and prove that R is the unique equivalence relation in t satisfying t/R = p.

II. Infinite Arithmetic

1. Equinumerous sets

If there is an injection from a set s to a set t, we write s ≤ t; the interpretation is that s

has no more elements than t (i.e. s has at most as many elements as t). A set s is said

to be equinumerous with (or equipotent to) a set t, in symbol s ≈ t, if there exists a

bijection from s to t; the interpretation is that s has exactly as many elements as t. We

write s < t if s ≤ t and s 6≈ t. Note that for sets s, t and u, we have

(i) s ≤ s;

(ii) s ≤ t, t ≤ u ⇒ s ≤ u; and

(iii) s ≤ t, t ≤ s ⇒ s ≈ t.

While the first two assertions can be easily proved, the third is the content of the next

theorem.
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Theorem 1 (Schröder-Bernstein). If there are injections f : s → t and g : t → s, then

there is a bijection from s to t.

Proof : First we consider the special case where sets a ⊃ a1 ⊃ a2, and a bijection

ϕ : a → a2 is given. We want to show that there is a bijection from a to a1. To this

end, define a3 = ϕ(a1), a4 = ϕ(a2), and in general an+2 = ϕ(an) for each n ∈ N; define

a∞ =
⋂{aj : j ∈ N}. Then a ⊃ a1 ⊃ a2 ⊃ a3 ⊃ a4 ⊃ a5 ⊃ · · · ⊃ a∞, and there are

bijections ϕ0 : a \ a1 → a2 \ a3, ϕn : a2n \ a2n+1 → a2n+2 \ a2n+3 (for each n ∈ N) given

by: ϕ0(x) = ϕ(x) for x ∈ a \ a1, ϕn(z) = ϕ(z) for each z ∈ a2n \ a2n+1. Since obviously

a∞ ≈ a∞, a2n−1 \ a2n ≈ a2n−1 \ a2n for each n ∈ N, and since

a1 = a∞ ∪ (a1 \ a2) ∪ (a2 \ a3) ∪ (a3 \ a4) ∪ (a4 \ a5) ∪ · · · (disjoint union),

a = a∞ ∪ (a1 \ a2) ∪ (a \ a1) ∪ (a3 \ a4) ∪ (a2 \ a3) ∪ · · · (disjoint union),

we see that there is a bijection from a to a1.

Now consider the general case. Let a = s, a2 = (g ◦ f)(a), let ϕ : a → a2 be given

by ϕ(x) = g
(
f(x)

)
, x ∈ a, and let a1 = g(t). By the preceding paragraph, a ≈ a1. Since

a1 ≈ t, we conclude that s ≈ t as desired. 2

For sets s, t and u, we have:

(i) s ≈ s,

(ii) s ≈ t ⇒ t ≈ s, and

(iii) s ≈ t, t ≈ u ⇒ s ≈ u.

For sets s and t, we will denote by ts the set of all mappings from s to t:

ts = {f | f is a mapping from s to t}.

We can easily prove the following
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Theorem 2. Let a1, a2, b1, b2 be sets such that a1 ≈ a2, b1 ≈ b2. Then

(i) a1 ∪ b1 ≈ a2 ∪ b2, provided a1 ∩ b1 = ∅, and a2 ∩ b2 = ∅,
(ii) a1 × b1 ≈ a2 × b2,

(iii) b1
a1 ≈ b2

a2.

Proof : Exercises. 2

2. Finite and Infinite Sets, Countable and Uncountable Sets

A set s is said to be finite if either s = ∅ or s ≈ {1, 2, · · · , n} for some n ∈ N; s is said

to be infinite if it is not finite. s is said to be countably infinite if s ≈ N; s is said

to be countable if it is finite or countably infinite; s is said to be uncountable if it is

infinite but not countably infinite i.e. if s 6≈ {1, 2, · · · , n} for each n ∈ N, and s 6≈ N.

Theorem 3. For every n ∈ N, {1, 2, · · · , n} < N. Consequently a countably infinite set

is infinite.

Proof : In fact for each n ∈ N, any map f : {1, 2, · · · , n} → N is not surjective. One can

establish this last assertion by mathematical induction on n, or by considering
n∑

j=1

f(j).

2

Theorem 4. N×N ≈ N. Consequently if sets s1, s2, · · · , sn are countably infinite (where

n ∈ N), then s1 × s2 × · · · × sn is countably infinite.

Proof : A bijection f : N× N→ N can be constructed according to the diagram:

©©©©©©©©©©©©©©©©

©©©©©©©©©©
©©©©

±°
²¯

1 ±°
²¯

2

±°
²¯

3

±°
²¯

4

±°
²¯

5

±°
²¯

6

(1,1) (1,2) (1,3) · · ·

(2,1) (2,2) (2,3) · · ·

(3,1) · · ·
...

©©¼ ©©¼ ©©¼

©©¼ ©©¼

©©¼
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e.g. f(p, q) = 1
2
(p + q − 1)(p + q − 2) + p. [One way to find an explicit expresion for f

is to determine a function h such that f(p, q) = h(p + q) + p, where h(2) = 0, h(3) = 1,

h(4) = 3, h(5) = 6, · · · h(` + 1) = p(`) + `− 1, ` ≥ 2.] Another bijection g : N×N→ N is

given by g(p, q) = 2p−1(2q− 1). (For the latter bijection g, note that each positive integer

is the product of some non-negative integral power of 2 and an odd positive integer.)

By mathematical induction, we see that N× N× · · · × N︸ ︷︷ ︸
n-times

≈ N. The last assertion of

the theorem then follows. 2

Making use of Theorem 1 and Theorem 4 above, we can prove

Theorem 5. We have:

(i) A subset of a finite (respectively, countable) set is finite (respectively, countable);

(ii) If sets s1, s2, · · · , sn are finite (n ∈ N), then
n⋃

j=1

sj and
∏n

j=1 sj are finite;

(iii) If each sj, j ∈ N, is countable and if at least one of these s′js is infinite, then
⋃

j∈N
sj

is countably infinite;

(iv) If each sj, j ∈ N, is countable and non-empty, and if si ∩ sj = ∅ whenever i 6= j,

then
⋃

j∈N
sj is countably infinite.

Proof : Exercise. 2

Theorem 6. N < (0, 1), so (0, 1) is uncountable.

(As usual, (0, 1) = {x ∈ R : 0 < x < 1}.)

Proof : Clearly the mapping g : N→ (0, 1) given by g(n) = 1
n+1

is injective. We will see

that any mapping f : N → (0, 1) cannot be surjective. Indeed, for each r ∈ f(N), there

exists a k ∈ N such that r = f(k). Now we can write r in a decimal expression e.g.

1

2
= 0.50̇ = 0.49̇,

√
2

2
= 0.70710678 · · · ;
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the decimal expression is unique if we discard those with recurring 9’s. Thus f(N) can be

listed out as follows

f(1) = 0.a
(1)
1 a

(1)
2 · · · a(1)

n · · ·
f(2) = 0.a

(2)
1 a

(2)
2 · · · a(2)

n · · ·
...

f(k) = 0.a
(k)
1 a

(k)
2 · · · a(k)

n · · ·
...

where a
(k)
j = 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. For each j ∈ N, let bj be 2 if a

(j)
j = 1, let bj

be 1 if a
(j)
j = 0, 2, 3, 4, 5, 6, 7, 8 or 9, and let c = 0.b1b2 · · · bn · · · (the real number whose

decimal expression is 0.b1b2 · · · bn). Then c ∈ (0, 1), yet for each k ∈ N, c 6= f(k), because

bk 6= a
(k)
k . Thus f(N) 6= (0, 1), and f is not surjective. 2

Theorem 7. (0, 1) ≈ (0,∞).

(As usual, (0,∞) = {x ∈ R : x > 0}.)

Proof : A bijection f : (0, 1) → (0,∞) is constructed according to the diagram (by

similar triangles):

bbbbbbbbbb

t

t

t d

d

P
1 1

0 f(x)

x

∞

e.g. f(x) =
x

1− x
, x ∈ (0, 1).

(One checks easily that f is a bijection.) 2

By similar methods one can prove

Theorem 8. We have:

(i) Z ≈ N ≈ Q, hence the set of all irrational numbers is uncountable;
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(ii) For real numbers a and b satisfying a < b,

(a, b) ≈ (a, b] ≈ [a, b) ≈ (a,∞) ≈ (−∞, b) ≈ [a,∞) ≈ (−∞, b] ≈ R.

Proof : Exercise. 2

It is easy to see that

(i) {0, 1}s ≈ ℘(s), and

(ii) t{1,2,··· ,n} ≈ t× t× · · · × t︸ ︷︷ ︸
n terms

,

where n ∈ N; a proof of these is left to the reader as an exercise. A proof of the following

theorem is a bit harder and will be omitted:

Theorem 9. We have:

(i) NN ≈ (0, 1) ≈ ℘(N);

(ii) For each n ∈ N, Rn ≈ R;

(iii) RN ≈ R;

(iv) R < ℘(R) ≈ RR.

(These formulas also follow from some results of the next section.)

Thus, in a certain sense, R is infinite of a higher order than N, and also RR is infinite of

a higher order than R. In fact we have

Theorem 10. For any set s, s < ℘(s).

Proof : The proof is similar to that of Theorem 4. Clearly the mapping g : s → ℘(s)

given by g(x) = x, x ∈ s, is injective. We will see that any mapping f : s → ℘(s) is not

surjective. Indeed the set

t = {x ∈ s | x 6∈ f(x)}
belongs to ℘(s), but for any y ∈ s, we have

〈
either y ∈ f(y), which implies y 6∈ t, hence f(y) 6= t

or y 6∈ f(y), which implies y ∈ t, hence again f(y) 6= t;

therefore we conclude that t 6∈ f(s), and f is not surjective. 2
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3. The Axiom of Choice

The axiom of choice was introduced by E. Zermelo (1871-1953) in early 20th Century.

Later, it is found to have many important equivalent statements and consequences, in-

cluding the following.

Theorem 11. The following statements are equivalent.

(i) The Axiom of Choice: if I is a nonempty set and if for each i ∈ I, ai is a nonempty

set, then the set
∏

i∈I ai is nonempty.

(ii) Zorn’s Lemma: Let s be a non-empty set, and ¹ a partial order in s. If every chain

in s has an upper bound in s, then s has a maximal element.

(iii) The Well Order Theorem: Every set can be well-ordered, i.e. for each set s, there

is a well order ¹ in s.

In 1938, K. Gödel proved that ”ZF (the ZF set theory) + Axiom of Choice” is con-

sistent if ZF is consistent. In 1963/64, P. J. Cohen proved that the Axiom of Choice is

independent of ZF , i.e. the Axiom of Choice cannot be derived from ZF.

4. Cardinal Arithmetic

By using the axiom of choice, it can be proved that there exist sets , called cardinal

numbers, such that each set s is assigned with a cardinal number |s|, that equinumer-

ous sets are assigned with one and the same cardinal number, that for each n ∈ N,

|{1, 2, · · · , n}| = n, that |∅| = 0, and that s ≈ |s|. So cardinal numbers can be regarded

as an extension of non-negative integers into the infinities. The cardinal number |s| of a

set s is also called the cardinality of s. Somewhat similar to Theorem 4 of §1 above, for

cardinal numbers α and β we can form α + β, αβ and αβ, which observe the usual arith-

metic (and partial order) rules for non-negative integers, e.g. α + β = β + α, αβ = βα,

(α+β)γ = αγ +βγ, α ≤ β ⇒ α+γ ≤ β +γ, etc. Thus arithmetic and partial order in R

are extended to the infinities. Moreover we have the following theorem, of which a proof

is not easy (c.f., for example, E. Hewitt and K. Stromberg, Real and Abstract Analysis,

Springer-Verlag, 1969).
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Theorem 12. Let α, β be cardinal numbers. Then

(i) exactly one of the following holds: α < β, α = β, β < α;

(ii) α + β = β, if α ≤ β and β is infinite ;

(iii) αβ = β, if 0 < α ≤ β and β is infinite;

(iv) αβ = 2β, if 2 ≤ α ≤ β.

Using the axiom of choice we can also prove the following

Theorem 13. For any infinite set s, N ≤ s. Consquently, |N| is the smallest infinite

cardinal number.


